SOLUTION SHEET #3

(1) (1) From the course we know that degree 2 extensions are normal \Rightarrow L/F & F/Q are normal. We claim that L/B is not normal. The minimal polynomial of $\sqrt{12}$ is given by $m_{\sqrt{52}}, a = x^4-2$. Write

$$x^{4}-2=(x^{2}+52)(x^{2}-52)=(x-i^{4}52)(x+i^{4}52)(x-i^{5}2)(x+i^{5}2)$$

Now if L/Q is normal then $M_{\sqrt{2},Q}$ splits into linear factors in L[x]. However L \subseteq IR and $I \not\in$ L \Rightarrow x^{1} -2 doesn't split. Thus L/Q is not normal.

(ii) Consider the morphism $Q: F \to F$ given by $a+bJz \mapsto a-bJz$ with $a,b \in Q$. Suppose that it extends to a morphism $Q: L \to L$ then

$$\tilde{\varphi}(\sqrt{2}) = \tilde{\varphi}(\sqrt{2})^2 = \tilde{\varphi}(\sqrt{2})^2 = \varphi(\sqrt{2}) = -\sqrt{2}$$

This shows that $\tilde{\varphi}(452)^2 = -52$, which is not possible.

(2) Write f=g.h for two polynomials g,hELEX]. Suppose that g is not a constant polynomial and let a be a root of g.

We can express [L(XI,K) in two different ways.

$$[L(\alpha): L] \cdot [L:k] = [L(\alpha):k] = [L(\alpha):k(\alpha):k]$$

Thus we obtain the relation m.k=n.l with $k,l \in IN>0$. It can be easily seen that $[L(x):L] \le [K(x):K]$ i.e. $k \le n$ which also implies that $l \le m$. Now the condition gcd(n,m)=1 implies that k=n and l=m. In particular deg g=deg.f and we are done.

- (3) The Chain of exensions QCQ(52) CQ(52) works.
- (4) It is not hard to see that α is a root of f with multiplicity $\gg 2$ \iff $f(\alpha)=0$ AND $f'(\alpha)=0$ where f' is the formal derivative of f.

Now let $n = [L:K] & x \in L!K$ and let f be the minimal poly. of x over K, note that k := degf divides n.

Write $f = \sum_{i=0}^{n} a_i x^i$ with $a_i \in K$. The leading coefficient of f' is n.a. which is non zero as an $\neq 0$ & $n \neq 0$ because chark $\neq n$. In conclusion, $\deg f' = k - 1$. \Rightarrow chock $\neq k$.

Now suppose that f has a root B in then f(B)=0 & f'LB)=0

but clegif < degin which controdicts the fact that f is the minimal polynomial of B over K.

(5) This is basically Ex 4 from worksheet 2.

To see this, notice that $\forall x \in L \setminus k$ by definition of k, $\sigma(x) \neq x$ moreover $\sigma \in Aut(L/k)$ as $\sigma(k) = 1 d_k$.

Now let $G = \langle \sigma \rangle \subseteq Aut(L/K)$ be the subgrap generated by σ .

To show that L/R is normal it suffices to show that $\forall \alpha \in L \setminus K$ malk splits over L. We show this by showing that G acts transitively on the roots of $m_{\alpha,K}$.

This can be shown by mimiching the proof of Ex4 worksheet 2.

Question: Why do we require that it has infinite order?

(6) (1) First, it is clear that F/K is separable as YXEF=> XEL and mx,1x splits into linear terms in its splitting field as L/K is separable.

Now let $\beta \in L$ and consider $m_{\beta,L} \in L[X]$. As β is a root of $m_{\beta,K}$ then $m_{\beta,L} \mid m_{\beta,K}$ in L[X] therefore $m_{\beta,L} \mid m_{\beta,K}$ in $SF_L(m_{\beta,K})$. But $m_{\beta,K}$ splits into linear factors in $SF_L(m_{\beta,K})$ as L/K is separate.

(ii) let a E L. If a E F then as F/K is purely inseparable the only root of mark is a and mark sprits in LtxI.

Now suppose $x \in L \setminus F$ write $m_{x,F} = \prod_{i=1}^{n} (x-a_i)$ with $a_i \in L$. and $m_{x,F} = \sum_{i=1}^{n} (x-a_i)$ with $a_i \in L$. One may inseption inseption $x \in L \setminus K$ is $x \in L \setminus K$ in $x \in L$ i

(mxif) = (Zi=1 cixi) = Zi=1 cipmxi.pm E K[x].

Moreover we can also write $(m_{\alpha_1F})^{pm} = (T_{i=1}^n(x-a_i))^{pm}$ = $T_{i=1}^n(x-a_i)^{pm}$ so $(m_{\alpha_1F})^{pm}$ splits in L[x]. Finally note that α is a root of $(m_{\alpha_1F})^{pm}$ therefore $m_{\alpha_1K}(m_{\alpha_1F})^{pm}$ but as $(m_{\alpha_1F})^{pm}$ splits in L[x] so does m_{α_1K} thus L[K is normal.

(7) First note that we need chark=p>0 to get inseparable extensions.

Let $K=F_p(t)$ (the field of rational functions / K) and let $L=F_p(t^{1/pq})$ where q+p is a prime number. We claim that L/K is inseparable & not normal.

To see this note that f:= m tipq, E IFp(t)[X] is given by f(x) = xPq - tthis is not separable as for instance in L, flx) factors as

 $f(x) = x^{pq} - (t^{1/pq})^{pq} = (x^q - t^{1/p})^p$ thus $t^{1/pq}$ is a multiple root. Now consider the polynomial irreducible polynomial

 $g(x)=x^q-t\in K(x)$ note that g has a root in L given by $(t^1/p^q)^p=t^1/q$. However it doesn't split in $L(x)^p$ as L doesn't contain the qth roots of unity.

This gives an infinite family of non-normal inseparable extensions.

(8) (1) First note that for BEL

f(Mx)(B) = Ma (B) + anz Ma (B) + ___ + a, Mx (B) + ao. B

 $= \alpha^{n}.\beta + a_{n,2}\alpha^{n-1}\beta + \underline{\qquad} + a_{1}\alpha.\beta + q_{0}.\beta$ $= f(\alpha).\beta = 0 \quad \text{as} \quad f = \min_{k}(\alpha).$ This shows that $f(M\alpha) = 0$. Moreover as f is the minimal polynomial of α a similar argument shows that f is the minimal polynomial of $M\alpha$.

By Cayley-Hamilton theorem f divides the characteristic polynomial of Ma.

Let N_{K} : $K(x) \rightarrow K(x)$ be the multiplication map by x. Then again $f(N_{K})=0$ and f divides $\chi(N_{K})$ the characteristic polynomial of N_{K} . However deg $X(N_X) \le d$ therefore $f = X(N_X)$.

Recall that [1, x, _, xn-1] is a K-basis for Kloan. Let [e1, _, ed? be a Kla) - busis of L. Then

{ e1, xe1, -, xⁿ⁻¹e1, e2, xe2, -, xⁿ⁻¹e2, -, ed, -, xⁿ⁻¹ed? is a K-basis of L.

The matrix Ma in this basis is given by,

$$Mx = \begin{pmatrix} Nx & 0 \\ 0 & Nx \end{pmatrix}$$
 thus $\chi(Mx) = \chi(Nx)^d = f^d$.

(ii) Recall that given an nxn matrix M, detM is given by the constant term in 2041 & (-1)n-1+rM is given by the coefficient of x^{n-1} in X(M).

Applying this to fd yields the result.